Evaluation of Clinical Value of Single Nucleotide Polymorphisms of Dihydropyrimidine Dehydrogenase Gene to Predict 5-Fluorouracil Toxicity in 60 Colorectal Cancer Patients in China
نویسندگان
چکیده
Dihydropyrimidine dehydrogenase (DPD) activity could be affected by single nucleotide polymorphisms (SNPs), resulting in either no effect, partial or complete loss of DPD activity. To evaluate if SNPs of DPD can be used to predict 5-FU toxicity, we evaluated five SNPs of DPD (14G1A, G1156T, G2194A, T85C and T464A) by TaqMan real time PCR in 60 colorectal cancer patients. Clinical data demonstrated that there was higher correlation between DPD activity and toxic effects of 5-FU (p<0.05). Six patients were positive for G2194A detection, which were all heterozygous. Two patients had lower DPD activities (< 3) with higher toxic effects (≥ stage III) while one patient was also positive for T85C detection. Ten patients were positive for T85C detection. Two patients were homozygous with lower DPD activities and higher toxic effects. Two patients were positive for the T464A detection, which were heterozygous with lower DPD activity and higher toxic effects and also positive for T85C detection. These data clearly indicated that the T464A and homozygous of the T85C are stronger biomarkers to predict the 5-FU toxicity. Our study significantly indicated that the detection for G2194A, T85C and T464A could predict ~13% of 5-FU severe toxic side effects.
منابع مشابه
5-Fluorouracil Induce the Expression of TLR4 on HCT116 Colorectal Cancer Cell Line Expressing Different Variants of TLR4
Two common single nucleotide polymorphisms (SNPs) of the human TLR4 gene, namely Asp299Gly (D299G) and Thr399Ile (T399I), have been shown to impair the ability of certain individuals to respond properly to TLR4 ligands. 5-Fluorouracil (5-FU) is widely used for the treatment of patients with advanced colon cancers. The present study examined the impact of two common polymorphisms of the TLR4 gen...
متن کامل5-Fluorouracil Induce the Expression of TLR4 on HCT116 Colorectal Cancer Cell Line Expressing Different Variants of TLR4
Two common single nucleotide polymorphisms (SNPs) of the human TLR4 gene, namely Asp299Gly (D299G) and Thr399Ile (T399I), have been shown to impair the ability of certain individuals to respond properly to TLR4 ligands. 5-Fluorouracil (5-FU) is widely used for the treatment of patients with advanced colon cancers. The present study examined the impact of two common polymorphisms of the TLR4 gen...
متن کاملPolymorphisms in the thymidylate synthase and dihydropyrimidine dehydrogenase genes predict response and toxicity to capecitabine-raltitrexed in colorectal cancer.
Pharmacogenetics is an increasingly useful field where the genetic studies are becoming an important tool for predicting drug toxicity and/or efficacy. Thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) gene polymorphisms could be highly informative tools in the clinical handling of colorectal cancer patients, who are following fluoropyrimidine based chemotherapy. Fifty-eight p...
متن کاملFrequency of c.1905+1G>A Mutation in DPD Gene among Patients with Colorectal Cancer in Mazandaran Province
Background and purpose: 5-Flourouracil (5-FU) is one of the most common chemical drugs used in chemotherapy of patients with cancers. Dihydropyrimidine dehydrogenase (DPD) is a critical enzyme in the catabolism of 5-FU. More than 80% of the administered 5-FU is catabolized by DPD. c.1905+1G>A mutation on DPD gene is the most important mutation associated with DPD enzymatic deficiency which lead...
متن کاملClinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance.
PURPOSE Although single nucleotide polymorphisms (SNP) of the dihydropyrimidine dehydrogenase gene (DPYD) have been reported, which affect enzyme activity and the severity of 5-fluorouracil (5-FU) toxicity, no pretherapeutic detection has thus far been developed. We investigated 22 DPYD gene SNPs, their respective incidence, their link with grade 3 to 4 toxic side effects, and their management ...
متن کامل